Regularization for a fractional sideways heat equation
نویسندگان
چکیده
منابع مشابه
Fourier regularization for a backward heat equation ✩
In this paper a simple and convenient new regularization method for solving backward heat equation— Fourier regularization method is given. Meanwhile, some quite sharp error estimates between the approximate solution and exact solution are provided. A numerical example also shows that the method works effectively. © 2006 Elsevier Inc. All rights reserved.
متن کاملWavelet and Fourier Methods for Solving the Sideways Heat Equation
We consider an inverse heat conduction problem, the Sideways Heat Equation, which is a model of a problem, where one wants to determine the temperature on both sides of a thick wall, but where one side is inaccessible to measurements. Mathematically it is formulated as a Cauchy problem for the heat equation in a quarter plane, with data given along the line x = 1, where the solution is wanted f...
متن کاملMalliavin calculus for fractional heat equation
In this article, we give some existence and smoothness results for the law of the solution to a stochastic heat equation driven by a finite dimensional fractional Brownian motion with Hurst parameter H > 1/2. Our results rely on recent tools of Young integration for convolutional integrals combined with stochastic analysis methods for the study of laws of random variables defined on a Wiener sp...
متن کاملA Preconditioned GMRES Method for Solving a 1D Sideways Heat Equation
The sideways Heat equation (SHE) is a model of the problem of determining the temperature on the surface of a body from the interior measurements. Mathematically it can be formulated as a noncharacteristic Cauchy problem for a parabolic partial differential equation. This problem is severely ill-posed: the solution does not depend continuously on the data. We use a preconditioned Generalized Mi...
متن کاملRegularization methods for unknown source in space fractional diffusion equation
We discuss determining the unknown steady source in a space fractional diffusion equation and show that both the Fourier and avelet dual least squares regularization methods work well for the ill-posed problem. The detailed error estimates are also strictly stablished for both of the methods. Moreover, the algorithm implementation and the corresponding numerical results are presented or the Fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.04.035